/i_

The Clean Coder’s
Guide to Laravel

Ash Allen Design

ashallendesign.co.uk

Cleaning Up Laravel
Controllers

Using Interfaces to Write
Better PHP Code

Contents

Quick & Easy Tips to
Speed Up Your
Application

Using the Strategy
Pattern

How to Create Your Own
Helper Functions

Making Your Laravel
Application More
Testable

Contents

Cleaning Up Your Controllers
Introduction
Intended Audience
The Problem with Bloated Controllers
The Bloated Controller
Lift Validation and Authorization into Form Requests
Move Common Logic into Actions or Services
Using DTOs with Actions
Use Resource or Single-use Controllers

Conclusion

Quick & Easy Tips to Speed Up Your Application
Introduction
Intended Audience
Only Fetch the Fields You Need in Your Database Queries
Use Eager Loading Wherever Possible
How to Force Laravel to Use Eager Loading
Allowing Eager Loading in Production Environments
What Happens If We Try to Lazy Load?
Get Rid of Any Unneeded or Unwanted Packages
Cache, Cache, Cache!
Route Caching
Config Caching
Event and View Caching
Caching Queries and Values
Use the Latest Version of PHP
Make Use of the Queues

Conclusion

How to Create Your Own Helper Functions

Introduction

—

0 Jd W N

13
15

17
17
17
17
19
20
2]
22
23
24
24
24
25
26
27
27
29

31
31

Intended Audience
Creating the Helper Function
Registering the Helper Function
Using the Helper Function
Using Multiple Helper Files

Conclusion

Using Interfaces to Write Better PHP Code
Introduction
Intended Audience
What Are Interfaces?
Using Interfaces in PHP

Conclusion

Using the Strategy Pattern
Introduction
Intended Audience
What Is the Strategy Pattern?
Using the Strategy Pattern in Laravel
Binding Multiple Classes to Interfaces

Conclusion

Making Your Laravel Application More Testable
Introduction
Intended Audience
Why Should | Write Tests?
Writing Controller Tests
Writing Better Controller Tests
What's the Problem?
How Can We Fix the Problem?
Bonus Testing Tip

Conclusion

31
31
33
34
35
36

38
38
38
38
40
45

47
47
47
47
48
52
53

56
56
56
56
58
59
59
60
63
64

Chapter]

Cleaning Up Laravel
Controllers

Cleaning Up Your Controllers

Introduction

Controllers play a huge role in any MVC (model view controller) based
project. They're effectively the "glue’ that takes a user's request, performs
some type of logic, and then returns a response. If you've ever worked on
any fairly large projects, you'll notice that you'll have a lot of controllers and
that they can start to get messy quite quickly without you realising. In this
chapter, we're going to look at how we can clean up a bloated controller in

Laravel.

Intended Audience

This chapter is intended for anyone who is new to Laravel development
that understands the basics of controllers. The concepts covered are
relatively simple to get started with.

The Problem with Bloated Controllers

Bloated controllers can cause several problems for developers. They can:

1. Make it hard to track down a particular piece of code or
functionality. If you're looking to work on a particular piece of code
that's in a bloated controller, you might need to spend a while
tracking down which controller the method is actually in. When using
clean controllers that are logically separated this is much easier.

2. Make it difficult to spot the exact location of a bug. As we'll see in
our code examples later on, if we're handling authorization,
validation, business logic, and response building all in one place, it
can be difficult to pinpoint the exact location of a bug.

3. Make it harder to write tests for more complex requests. It can

sometimes be difficult to write tests for complex controller methods

https://www.guru99.com/mvc-tutorial.html
https://laravel.com
https://laravel.com

that have a lot of lines and are doing many different things. Cleaning
up the code makes testing much easier. We'll cover testing later on
in chapter 6.

The Bloated Controller

For this chapter, we're going to use an example UserController:

class UserController extends Controller
{
public function store(Request $request): RedirectResponse

{

$this->authorize('create', User::class);

$request->validate([
‘name’ => 'string|required|max:50"',
‘email’ => 'email|required|unique:users’,
'password' => 'string|required|confirmed',

1)

$user = User::create([
‘name’ => $request->name,
'email’ => $request->email,
‘password’' => $request->password,

1)

$user->generateAvatar();
$this->dispatch(RegisterUserToNewsletter::class);

return redirect(route('users.index'));

}
public function unsubscribe(User $user): RedirectResponse
{

$user->unsubscribeFromNewsletter();

return redirect(route('users.index'));

To keep things nice and simple to read, | haven't included the ,

,, I CENION and ReERSII@M Methods in the controller.

But we'll make the assumption that they are there and that we're also using

the below techniques to clean up those methods too. For the maijority of
the chapter, we'll be focusing on optimizing the method.

Lift Validation and Authorization into Form
Requests

One of the first things that we can do with the controller is to lift any
validation and authorization out of the controller and into a form request

class. So, let's take a look at how we could do this for the controller's
IO Method.

We'll use the following Artisan commmand to create a new form request:

php artisan make:request StorelUserRequest

The above command will have created a new

app/Http/Requests/StoreUserRequest.php [dleiRipleif{elelCRII'CRIIES

https://laravel.com/docs/8.x/validation#form-request-validation

class StoreUserRequest extends FormRequest

{

public function authorize()

{

return false;

b

public function rules()

{

return [

We can use the method to determine if the user should be
allowed to carry out the request. The method should return true if they can
and false if they cannot. We can also use the method to specify
any validation rules that should be run on the request body. Both of these
methods will run automatically before we manage to run any code inside
our controller methods without us needing to manually call either of them.

So, let's move our authorization from the top of our controller's
method and into the method. After we've done this, we can
move the validation rules from the controller and into the
method. We should now have a form request that looks like this:

class StoreUserRequest extends FormRequest

{

public function authorize(): bool

{

return Gate::allows('create', User::class);

b

public function rules(): array

{

return [
‘name’ => 'string|required|max:50"',
‘email’ => 'email|required|unique:users"’,
'password’' => 'string|required|confirmed',

Our controller should now also look like this:

class UserController extends Controller
{
public function store(StoreUserRequest $request): RedirectResponse
{
$user = User::create([
"name'’ => $request->name,
'email’ => $request->email,
‘password' => $request->password,

1)

$user->generateAvatar();

$this->dispatch(RegisterUserToNewsletter::class);

return redirect(route('users.index'));

}
public function unsubscribe(User $user): RedirectResponse
{

$user->unsubscribeFromNews letter();

return redirect(route('users.index'));

Notice how in our controller, we've changed the first argument of the

method from o RNERITEGEAGIad A IS to our new
AV TAGIRTAGEL TES IS LI HTI LIS . \We've also managed to reduce

some of the bloat for the controller method by extracting it out into the

request class.

Note: For this to work automatically, you'll need to make sure that your
controller is using the

\Illuminate\Foundation\Auth\Access\AuthorizesRequests [elglel

traits. These
come automatically included in the controller that Laravel provides you in
a fresh install. So, if you're extending that controller, you're all set to go. If
not, make sure to include these traits in your controller.

Move Common Logic into Actions or Services

Another step that we could take to clean up the method could
be to move out our "business logic” into a separate action or service class.

In this particular use case, we can see that the main functionality of the
method is to create a user, generate their avatar and then
dispatch a queued job that registers the user to the newsletter. In my
personal opinion, an action would be more suitable for this example rather
than a service. | prefer to use actions for small tasks that do only one
particular thing. Whereas for larger amounts of code that could potentially
be hundreds of lines long and do muiltiple things, it would be more suited to

a service.

So, let's create our action by creating a new Actions folder inside our app
folder and then creating a new class inside this folder called

NIV Ya & W isl. \We can then move the code into the action like this:

class StoreUserAction
{
public function execute(Request $request): void
{
$user = User::create([
"name'’ => $request->name,
'email’ => $request->email,
‘password’' => $request->password,

1);

$user->generateAvatar();
$this->dispatch(RegisterUserToNewsletter::class);

Now we can update our controller to use the action:

class UserController extends Controller
{
public function store(
StoreUserRequest $request,
StoreUserAction $storeUserAction
): RedirectResponse {
$storeUserAction->execute($request);

return redirect(route('users.index'));

}

public function unsubscribe(User $user): RedirectResponse

{

$user->unsubscribeFromNewsletter();

return redirect(route('users.index'));

As you can see, we've now been able to lift the business logic out of the
controller method and into the action. This is useful because, as |
mentioned before, controllers are essentially the "glue” for our requests and
responses. So, we've managed to reduce the cognitive load for
understanding what a method does by keeping the code logically
separated. For example, if we want to check the authorization or validation,
we know to check the form request. If we want to check what's being done

with the request data, we can check the action.

Another huge benefit to abstracting the code out into these separate
classes is that it can make testing a lot easier and faster.

Using DTOs with Actions

Another great benefit of extracting your business logic into services and
classes is that you can now use that logic in different places without
needing to duplicate your code. For example, let's assume that we have a
that handles traditional web requests and an

WAV d I RETal that handles APl requests. For the sake of argument,
we can make the assumption that the general structure of the

methods for those controllers will be the same. But, what would we do if our
API request doesn't use an email field, but instead uses an
field? We wouldn't be able to pass our request object to the

NIy Ya s 11l Class because it would be expecting a request object
that has an email field.

To solve this issue, we can use DTOs (data transfer objects). These are a
really useful way of decoupling data and passing it around your system'’s
code without it being tightly coupled to anything (in this case, the request).

To add DTOs to our project, we'll use Spatie's

SSEY YA ERE R dEN S IR Lel S [Yal package and install it using the following

Artisan command:

composer require spatie/data-transfer-object

Now that we have the package installed, let's create a new
DataTransferObjects folder inside our App folder and create a new

ST 0N 1ol class. We'll then need to make sure that our DTO

SYCIplel) Spatie\DataTransferObject\DataTransferObject RW[EKelelgRial=al

define our three fields like so:

class StoreUserDTO extends DataTransferObject
{

public string $name;

public string $email;

public string $password;

https://en.wikipedia.org/wiki/Data_transfer_object
https://github.com/spatie/data-transfer-object

Now that we've done this, we can add a new method to our
NI LS5 from before to create and return a ESEE=VSIg 0l class
like so:

class StoreUserRequest extends FormRequest

{

public function authorize(): bool
{
return Gate::allows('create', User::class);

}

public function rules(): array
{
return [
‘name’ => 'string|required|max:50"',
‘email'’ => 'email|required|unique:users"’,
'password' => 'string|required|confirmed',

13

public function toDTO(): StoreUserDTO
{
return new StoreUserDTO(
name: $this->name,
email: $this-=email,
password: $this->password,

We can now update our controller to pass the DTO to the action class:

class UserController extends Controller
{
public function store(
StoreUserRequest $request,
StoreUserAction $storeUserAction
): RedirectResponse {
$storeUserAction->execute($request->toDTO());

return redirect(route('users.index'));

+
public function unsubscribe(User $user): RedirectResponse
{

$user->unsubscribeFromNewsletter();

return redirect(route('users.index'));

Finally, we'll need to update our action's method to accept a DTO as an

argument rather than the request object:

class StoreUserAction
{
public function execute(StoreUserDTO $storeUserDT0): void
{
$user = User::create([
"name'’ => $storeUserDTO0->name,
'email’ => $storeUserDTO0->email,

'password' => $storeUserDTO->password,

1);

$user->generateAvatar();
$this->dispatch(RegisterUserToNewsletter::class);

As a result of doing all of this, we have now completely decoupled our
action from the request object. This means that we can reuse this action in
multiple places across the system without being tied to a specific request
structure. We would now also be able to use this approach in a CLI

environment or queued job that isn't tied to a web request. As an example,

1

if our application had the functionality to import users from a CSV file, we
would be able to build the DTOs from the CSV data and pass it into the

action.

To go back to our original problem of having an API request that used

rather than , we would now be able to solve it by

simply building the DTO and assigning the DTO’s email field the request's

field. Let's imagine that the APl request had its own
separate form request class. It could look like this as an example:

12

class StoreUserAPIRequest extends FormRequest

{

public function authorize(): bool
{
return Gate::allows('create', User::class);

I

public function rules(): array
{
return [
‘name’ => 'string|required|max:50",
‘email_address' => 'email|required|unique:users’',
'password’ => 'string|required|confirmed’,

Il

public function toDTO(): StoreUserDTO
{
return new StoreUserDTO(
name: $this->name,
email: $this->email_address,
password: $this->password,

Use Resource or Single-use Controllers

A great way of keeping controllers clean is to ensure that they are either
‘resource controllers” or "single-use controllers’. Before we go any further

13

https://laravel.com/docs/8.x/controllers#resource-controllers
https://laravel.com/docs/8.x/controllers#single-action-controllers

and try to update our example controller, let's take a look at what both of
these terms mean.

A resource controller is a controller that provides functionality based on a
particular resource. So, in our case, our resource is the User model and we
want to be able to perform all CRUD (create, update, update, delete)

operations on this model. A resource controller typically contains ,
create() l store() J§ shon() | edit) J update() CUEJ destroy()
methods. It doesn't necessarily have to include all of these methods, but it
wouldn't have any methods that weren't in this list. By using these types of
controllers, we can make our routing RESTful. For more information about
REST and RESTful routing, check out this article here.

A single-use controller is a controller that only has one public
method. These are really useful if you have a controller that doesn't really
fit into one of the RESTful methods that we have in our resource controllers.

Based on the above information, we can see that our JIHIdE idg N LTy
could probably be improved by moving the unsubscribe method to its own
single-use controller. By doing this, we'd be able to make the UserController

a resource controller that only includes resource methods.

So let's create a new controller using the following Artisan commmand:

php artisan make:controller UnsubscribeUserController -i

Notice how we passed gl to the command so that the new controller will
be an invokable, single-use controller. We should now have a controller
that looks like this:

https://www.codecademy.com/articles/what-is-crud
https://www.codecademy.com/articles/what-is-rest

class UnsubscribeUserController extends Controller

{

public function

_invoke(Request $request)

We can now move our method's code over and delete the unsubscribe

method from our old controller:

class UnsubscribeUserController extends Controller

{

public function __1invoke(Request $request): RedirectResponse

{

$user->unsubscribeFromNewsletter();

return redirect(route('users.index'));

Make sure that you remember to switch over your route in your

RS YAT Mol file to use the R dgis [delikdaIRNIal controller rather

than the B ida 1B for this method.

Conclusion

This chapter should have given you an insight into the different types of
things you can do to clean up your controllers in your Laravel projects.
Please remember though that the techniques I've used here are only my
personal opinion. I'm sure that there are other developers that would use a
totally different approach to building their controllers. The most important
part is being consistent and using an approach that fits in with your (and
your team’s) workflow.

Chapter 2

Quick & Easy Tips to
Speed Up Your
Application

Quick & Easy Tips to Speed Up Your
Application

Introduction

It's estimated that 40% of people will leave a website if it takes longer than
3 seconds to load! So, it's incredibly important from a business standpoint

to make sure that you stay under that 3-second threshold.

Therefore, whenever | write any code for my new Laravel projects, | try to
make sure to optimise the code as much as | can within my given time and
cost constraints. If | ever work on any existing projects, | also try to use
these techniques to update any slow-running code to improve the overall

experience for the users.

In this chapter, we will look at some of the techniques that | use (or suggest

to other developers) to get some quick performance improvements for my
clients’ and my own Laravel websites and applications.

Intended Audience

This chapter is intended for Laravel developers at any stage that is looking
for some quick tips that are easy to add to their application.

Only Fetch the Fields You Need in Your Database
Queries

One easy way of speeding up your Laravel site is by reducing the amount
of data transferred between your app and the database. A way that you
can do this is by specifying only the columns that you need in your queries

using a select clause.

17

https://laravel.com/
https://ashallendesign.co.uk/services/laravel-web-development
https://laravel.com/docs/8.x/queries#selects

As an example, say you have a User model that contains 20 different fields.
Now, imagine that you have 10000 users in your system and you're trying to
do some form of processing on each of them. Your code might look

something like this:

$users = User::all();

foreach ($users as $user) {

s

The above query would be responsible for retrieving 200,000 fields worth of
data. But, imagine that when you're processing each user, you only ever
actually use the , , and RESEGENEN fields. So, this means
that out of the 20 fields that you're retrieving, 17 of them are more or less
redundant for this particular piece of code. So, what we can do is explicitly
define the fields that are returned in the query. In this case, your code may
look something like this:

$users = User::select([‘id’, ‘first_name’, ‘last_name’])->get();

foreach (%users as $user) {

}

By doing this, we will have reduced the number of fields returned in the
query from 200,000 to 30,000. Although this probably wouldn’t have much
effect on the database’s |0 load, it would reduce the network traffic
between your app and the database. This is because there would
(presumqbly) be less data to serialise, send, and then deserialise than if
you were to fetch all of the available fields. By reducing the network traffic
and the amount of data that needs to be processed, this would help to

speed up your Laravel site.

18

Please note, in the above example you might not ever actually do
something like this and you would probably use chunks or pagination
depending on the situation. The example is just to show a possible,
easy-to-implement solution.

This solution might not gain you large improvements on a smaller site or
application. However, it is something that can definitely assist in reducing
load times on applications where performance is an important must-have.
You might also see better improvements if you're querying a table that has
BLOB or TEXT fields. These fields can potentially hold megabytes of data
and so can potentially increase the query time. So, if your model’s table
contains either of these fields, consider explicitly defining the fields that you
need in your query to reduce the load time.

Use Eager Loading Wherever Possible

When you are fetching any models from the database and then doing any
type of processing on the model’s relations, it's important that you use
eager loading. Eager loading is super simple using Laravel and basically
prevents you from encountering the N+1 problem with your data. This
problem is caused by making N+1 queries to the database, where N is the
number of items being fetched from the database. To explain this better

and give it some context, let's check out the example below.

Imagine that you have two models (feLud and [FTEIaE) with o

one-to-one relationship between them. Now imagine that you have 100
comments and you want to loop through each one of them and output the

author’'s name.

Without eager loading, your code might look like this:

https://laravel.com/docs/8.x/queries#chunking-results
https://laravel.com/docs/8.x/pagination#introduction
https://laravel.com/docs/8.x/eloquent-relationships#eager-loading
https://laravel.com/docs/8.x/eloquent-relationships#eager-loading

$comments = Comment::all();

foreach ($comments as $comment) {
print_r($comment->author->name);

}

The code above would result in 101 database queries! The first query would
be to fetch all of the comments. The other one hundred queries would
come from getting the author’'s name in each iteration of the loop.
Obviously, this can cause performance issues and slow down your
application. So, how would we improve this?

By using eager loading, we could change the code to say:

$comments = Comment::with(‘authors’)->get();

foreach ($comments as $comment) {
print_r($comment->author->name);

}

As you can seeg, this code looks almost the same and is still readable. By

adding the EHATAGI@ET RN this will fetch all of the comments and

then make another query to fetch the authors at once. So, this means that
we will have cut down the query from 101 to 2!

For more information, check out the Laravel documentation on eager
loading.

How to Force Laravel to Use Eager Loading

In Laravel, you can actually prevent lazy loading. This feature is incredibly
useful because it can help to ensure that the relationships are eager
loaded. As a result of this, it can improve performance and reduce the
number of queries that are made to the database as shown in the
example above.

20

https://laravel.com/docs/8.x/eloquent-relationships#eager-loading
https://laravel.com/docs/8.x/eloquent-relationships#eager-loading

It's super simple to prevent lazy loading. All we need to do is add the

following line to the method of our :

Model: :preventlLazylLoading();

SO, in our EYJIRVAR o)A s [Tl it Would look a bit like this:

namespace App\Providers;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider
' public function boot(): void

{

Model::preventlLazylLoading();

Allowing Eager Loading in Production Environments

It's possible that you might only want to enable this feature when in your
local development environment. By doing that, it can alert you to places in
your code that are using lazy loading while building new features, but not
completely crash your production website. For this very reason, the

JEVEINAEFAYREE I {@M Method accepts a boolean as an argument, so we

could use the following line:

Model: :preventlLazyLoading(! app()->isProduction());

So, in our WYJSEIRQVARLdole AN [l it could look like this:

21

namespace App\Providers;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{

public function boot(): void

{

Model: :preventlLazylLoading(! app()->isProduction());

By doing this, the feature will be disabled if your is production so
that any lazy loading queries that slipped through don't cause exceptions
to be thrown on your site.

What Happens If We Try to Lazy Load?

If we have the feature enabled in our service provider and we try to lazy
load a relationship on a model, an

Illuminate\Database\LazyLoadingViolationException [gex(e=Telile]aRVY]|Nel=
thrown.

To give this a little bit of context, let's use our and
model examples from above. Let's say that we have the feature enabled.

The following snippet would throw an exception:

$comments = Comment::all();

foreach ($comments as $comment) {
print_r($comment->author->name);

s

However, the following snippet would not throw an exception:

22

$comments = Comment::with(‘authors’)->get();

foreach ($comments as $comment) {
print_r($comment->author->name);

}

Get Rid of Any Unneeded or Unwanted Packages

Open up your file and look through each of your
dependencies. For each of your dependencies, ask yourself ‘do I really

need this package?". Your answer is mostly going to be yes, but for some of
them, it might not be.

Each time you include a new Composer library into your project, you are
potentially adding extra code that might be run unnecessarily. Laravel
packages typically contain service providers that are run on each request
that register services and run code. So, say if you add 20 Laravel packages
to your application, that's probably a minimum of 20 classes being
instantiated and run on each request. Although this isn't going to have a
huge impact on performance for sites or applications with small amounts
of traffic, you'll definitely be able to notice the difference on larger
applications.

The solution to this is to determine whether you actually need all of the
packages. Maybe you're using a package that provides a range of features
but you're only actually using one small feature out of it. Ask yourself ‘could
I write this code myself and remove this entire package™ Of course, due to
time constraints, it's not always feasible to write the code yourself because
you’ll have to write it, test it and then maintain it. At least with using the
package, you're making use of the open-source community to do those
things for you. But, if a package is simple and quick to replace with your
own code, then I'd consider removing it.

23

https://getcomposer.org/

Cache, Cache, Cache!

Laravel comes with plenty of caching methods out of the box. These can
make it really easy to speed up your website or application while it’s live
without needing to make any code changes.

Route Caching

Because of the way that Laravel runs, it boots up the framework and parses
the routes file on each request that is made. This requires reading the file,
parsing its contents, and then holding it in a way that your application can
use and understand. So, Laravel provides a command that you can use
which creates a single routes file that can be parsed much faster:

php artisan route:cache

Please note though that if you use this command and change your routes,

you'll need to make sure to run:

php artisan route:clear

This will remove the cached routes file so that your newer routes can be
registered. It might be worthwhile to add these two commands to your
deploy script if you don't already have them. If you don’'t use a deploy
script, you might find my package Laravel Executor useful to help you when
running your deployments.

Config Caching

Similar to the route caching, each time that a request is made, Laravel is
booted up and each of the config files in your project are read and parsed.

24

https://github.com/ash-jc-allen/laravel-executor

So, to prevent each of the files from needed to be handled, you can run the
following command which will create one cached config file:

php artisan config:cache

Just like the route caching above though, you'll need to remember to run
the following command each time you update your .env file or config files:

php artisan config:clear

Event and View Caching

Laravel also provides two other commmands that you can use to cache your
views and events so that they are precompiled and ready when a request
is made to your application. To cache the events and views, you can use
the following commandes:

php artisan event:cache

php artisan view:cache

Like all the other caching commands, though, you'll need to remember to
bust these caches whenever you make any changes to your code by
running the following commandes:

php artisan event:clear

php artisan view:clear

25

In the past, I've seen a lot of developers cache their config in their local
development environment and then spend ages trying to figure out why
their .env file changes aren’t showing up. So, I'd probably recommend only
caching your config and routes on live systems so that you don’'t end up in
the same situation.

Caching Queries and Values

Within your Laravel app’s code, you can cache items to improve the

website’s performance. As an example, imagine you have the following
query:

$users = DB::table('users')->get();

To make use of caching with this query, you could update the code to the
following:

$users = Cache::remember('users', 120, function () {

return DB::table('users')->get();

1)

The code above uses the method. What this basically does is
it checks if the cache contains any items with the key users. If it does, it
returns the cached value. If it doesn’t exist in the cache, the result of the

D:HE IR EPE-IA I QM query will be returned and also cached. In this

particular example, the item would be cached for 120 seconds.

Caching data and query results like this can be a really effective way of
reducing database calls, reducing runtime, and improving performance.
However, it's important to remember that you might sometimes need to
remove the item from the cache if it's no longer valid.

26

Using the example above, imagine that we have the user’'s query cached.
Now imagine that a new user has been created, updated, or deleted. That
cached query result is no longer going to be valid and up to date. To fix this
issue, we could make use of Laravel model observers to remove this item
from the cache. This means that next time we try and grab the
variable, a new database query will be run that will give us the up-to-date

result.

Use the Latest Version of PHP

With each new version of PHP that comes out, performance and speed are
improved. Kinsta ran a lot of tests across multiple PHP versions and
different platforms (e.g. - Laravel, WordPress, Drupal, Joomla) and found
that PHP 8.0 gave the best performance increase.

This particular tip might be a bit more difficult to implement compared to
the other tips above because you'll need to audit your code to make sure
that you can safely update to the latest version of PHP. As a side note,
having an automated test suite might help give you the confidence to do
this upgrade!

Make Use of the Queues

This tip might take a little bit longer than some of the other code-based
tips above to implement. Despite this, this tip will probably be one of the

most rewarding in terms of user experience.

One way that you can cut down the performance time is to make use of

the Laravel queues. If there’'s any code that runs in your controller or
classes in a request that isn't particularly needed for the web browser

response, we can usually queue it.

27

https://kinsta.com
https://kinsta.com/blog/php-benchmarks/
https://laravel.com/docs/8.x/queues#introduction

To make it easier to understand, check out this example:

class ContactController extends Controller

{

public function store(ContactFormRequest $request)
{

$request->storeContactFormDetails();

Mail::to('mail@ashallendesign.co.uk')->send(
new ContactFormSubmission()

)5

return response()->json(['success' => true]);

In the above code, when the method is invoked it stores the
contact form details in the database, sends an email to an address to
inform them of a new contact form submission, and returns a JSON
response. The issue with this code is that the user will have to wait until the
email has been sent before they receive their response on the web
browser. Although this might only be several seconds, it can potentially

cause visitors to leave.

To make use of the queue system, we could update the code to the
following instead:

28

class ContactController extends Controller

{

public function store(ContactFormRequest $request)

{

$request->storeContactFormDetails();

dispatch(function () {
Mail::to('mail@ashallendesign.co.uk')->send(
new ContactFormSubmission()
);

})->afterResponse();

return response()->json(['success' => true]);

The code above in the method will now store the contact form
details in the database, queue the mail for sending and then return the
response. Once the response has been sent back to the user’'s web
browser, the email will be added to the queue so that it can be processed.
By doing this, it means that we don’t need to wait for the email to be sent
before we return the response.

Check out the Laravel docs for more information on how to set up the
queues for your Laravel website or application.

Conclusion

This chapter should have given you an overview of several quick ways that
you can speed up your Laravel project without needing to totally refactor
your code. Of course, there are more things that you can do but these are
the ones that | typically like to use myself when in need of a quick
performance gain.

29

Chapter 3

How to Create Your
Own Helper
Functions

How to Create Your Own Helper Functions

Introduction

Helper functions can be extremely useful in your Laravel projects. They can

help to simplify the code in your projects in a clean and easy way. Laravel
comes with many helper functions out-of-the-box such as LI ,

and . But as your projects start to grow, you'll likely

find that you'll want to add your own.

In this chapter, we're going to look at how we can create and use our own
custom PHP helper functions in our Laravel projects.

Intended Audience

This chapter is aimed at developers who have a basic understanding of
using Laravel and that are looking to tidy up their code using functions that

can be accessed system-wide.

Creating the Helper Function

To add our own helper functions, we need to start by creating a new PHP

file to place them in. So, let's create a UMM file inside our m

folder. As a side note, this location is down to personal preference really.
Another common place I've seen the file placed is inside an

=] YA I NI VA N TG ol file. So, it's down to you to choose a directory

that you feel works best for you.

Now that we've got our file, we can add our helper function to it. As a basic
example for this chapter, we're going to be creating a super-simple

function that converts minutes to hours.

Let's add the function to our EENIENJ M file like so:

31

https://laravel.com
https://laravel.com/docs/8.x/helpers#miscellaneous-method-list

<?php

if (! function_exists('seconds_to_hours')) {
function seconds_to_hours(int $seconds): float
{
return $seconds / 3600;

}

As you can see in the example above, the function itself is really simple.
However, one thing that you might notice is that the function name is

written in snake case (e.g.) rather than camel case

(e.g.) like you'd usually see with method names on a
class. You aren't necessarily fixed to using snake case for defining the

function name, but youl'll find that all of the Laravel helper functions are
written this way. So, I'd probably advise using the format just so that you
can follow the typical standard and format that's expected. This is totally
up to you though.

Another thing that you might have noticed is that we have wrapped the
function name inside an if statement. This is to stop us from accidentally
redeclaring any helpers with the same name that have already been
registered. For example, let's say that we were using a package that
already had a function registered, this would
prevent us from registering our own function with the same name. To get
around this, we could just simply change the name of our own function to
avoid any clashes.

It's also really important to remember when creating helper functions that
they are only supposed to be used as helpers. They aren't really meant to
be used to perform any business logic, but rather to help you tidy up your
code. Of course, you can add complex logic to them, but if this is
something you're looking to do, I'd probably advise thinking about if the

32

code would be a better fit in another place such as a service class, action
class, or trait.

Registering the Helper Function

Now that we've created our helper file, we need to register it so that we can
use our new function. To do this, we can update our eI 1M file SO
that our file is loaded at runtime on each request and is available for using.
This is possible because Laravel includes the Composer class loader in the
public/index.php gillz}

In your file, you should have a section that looks like this:

"autoload": {
"psr-4": {
IIApp\\II: Ilapp/ll’

"Database\\Factories\\": "database/factories/",
"Database\\Seeders\\": "database/seeders/"

In this section, we just need to add the following lines to let Composer know
that you want to load your file:

"files": [

"app/helpers.php"

1,

33

https://getcomposer.org/

The autoload section of your composer.json file should now look like this:

"autoload": {
"files": [
"app/helpers.php"

I,
"psr-4": {

“App\\": "app/",
"Database\\Factories\\": "database/factories/",
"Database\\Seeders\\": "database/seeders/"

Now that we've manually updated the eI LN file, we'll need to
run the following command to dump our autoload file and create a new
one:

composer dump-autoload

Using the Helper Function

Congratulations! Your helper function should now be all set up and ready
to use. To use it, you can simply use:

seconds_to_hours(331);

Because it's been registered as a global function, this means you can use it
in a variety of places such as your controllers, service classes, and even
other helper functions. The part that | love about helper functions most
though is being able to use them in your Blade views. For example, let's

imagine that we had o R L@EF that contained a

SN AN IO Method that did the same as our new function. If we

34

were to use the service class in our Blade view, we might have to do
something like this:

{{ \App\Services\TimeService: :secondsToHours(331) }}

As you can imagine, if this was used in multiple places across a page, it
could probably start to make your view a bit messy.

Using Multiple Helper Files

Now that we've seen how we can register and use the helpers, we will look
at how we can take it one step further. Over time, as your Laravel projects
grow, you might find that you have a large number of helpers that are all in
one file. As you can imagine, the file might start to look a bit unorganised.
So, we might want to think about splitting our functions out into separate
files.

As an example, let's imagine that we have many helpers in our

E[YAl file; some related to money, some related to time, and
some related to user settings. We could start by splitting those functions

out into separate files such as: REIY YA ERIIEVA IS TN |
app/Helpers/time.php [Helglel app/Helpers/settings.php MIaINaallelatRialels

we can now delete our EISYAIINE N1 I"M file because we don't need it

anymore.

After that, we can update our file in a similar way to
before so that it nows loads our 3 new files:

35

"autoload": {

"files": [
“app/Helpers/money.php",
"app/Helpers/settings.php",
"app/Helpers/time.php",

1

"psr-4": {
IIApp\\II: Ilapp/ll’
"Database\\Factories\\": "database/factories/",
"Database\\Seeders\\": "database/seeders/"

We'll need to remember to dump the Composer autoload file again by
running the following command:

composer dump-autoload

You should now be able to continue using your functions and have the
benefit of them being split into logically separated files.

Conclusion

This chapter should have shown you how to create and register your own
PHP helper functions for your Laravel projects. Remember not to use them
to perform complex business logic and to see them more as a way of
tidying up little bits of code.

36

Chapter 4

Using Interfaces to
Write Better PHP
Code

Using Interfaces to Write Better PHP Code

Introduction

In programming, it's important to make sure that your code is readable,
maintainable, extendable and easily testable. One of the ways that we can
improve all of these factors in our code is by using interfaces.

Intended Audience

In comparison to the previous chapters, the content in this chapter can
seem a bit daunting at first. It is aimed at developers who have a basic
understanding of OOP (object-oriented programming) concepts and using
inheritance in PHP. If you know how to use inheritance in your PHP code, this
chapter should hopefully be understandable.

What Are Interfaces?

In basic terms, interfaces are just descriptions of what a class should do.
They can be used to ensure that any class implementing the interface will
include each public method that is defined inside it.

Interfaces can be:

e Used to define public methods for a class.
e Used to define constants for a class.

Interfaces cannot be:

e Instantiated on their own.
e Used to define private or protected methods for a class.
e Used to define properties for a class.

38

Interfaces are used to define the public methods that a class should
include. It's important to remember that only the method signatures are
defined and that they don't include the method body (like you would
typically see in a method in a class). This is because the interfaces are only
used to define the communication between objects, rather than defining
the communication and behaviour like in a class. To give this a bit of
context, this example shows an example interface that defines several
public methods:

interface DownloadableReport

{

public function getName(): string;

public function getHeaders(): array;

public function getData(): array;

According to php.net, interfaces serve two main purposes:

1. To allow developers to create objects of different classes that may
be used interchangeably because they implement the same
interface or interfaces. A common example is multiple database
access services, multiple payment gateways, or different caching
strategies. Different implementations may be swapped out without
requiring any changes to the code that uses them.

2. To allow a function or method to accept and operate on a
parameter that conforms to an interface, while not caring what else
the object may do or how it is implemented. These interfaces are
often named like Iterable, Cacheable, Renderable, or so on to

describe the significance of the behavior.

39

https://www.php.net/manual/en/language.oop5.interfaces.php

Using Interfaces in PHP

Interfaces can be an invaluable part of OOP (object-oriented
programming) codebases. They allow us to decouple our code and
improve extendability. To give an example of this, let's take a look at this

class below:

class BlogReport
{

public function getName(): string

{
return 'Blog report';

b

As you can see, we have defined a class with a method that returns a
string. By doing this, we have defined the behaviour of the method so we
can see how is building up the string that is returned. However,
let's say that we call this method in our code inside another class. The
other class won't care how the string was built up, it will just care that it was
returned. For example, let's look at how we could call this method in

another class:

class ReportDownloadService

{
public function downloadPDF(BlogReport $report)

{

$name = $report->getName();

Although the code above works, let's imagine that we now wanted to add
the functionality to download a users report that's wrapped inside a
class. Of course, we can't use the existing method in our

40

eI IR CEL T K-l because we have enforced that only a

class can be passed. So, we'll have to rename the existing
method and then add a new method, like below:

class ReportDownloadService

{
public function downloadBlogReportPDF(BlogReport $report)
{

$name = $report->getName();

}

public function downloadUsersReportPDF(UsersReport $report)
{

$name = $report->getName();

Although you can't actually see it, let's assume that the rest of the methods
in the class above use identical code to build the download. We could lift
the shared code into methods but we will still likely have some shared
code. As well as this, we're going to have multiple points of entry into the
class that runs near-identical code. This can potentially lead to extra work

in the future when trying to extend the code or add tests.

For example, let's imagine that we create a new EEINGSTE]ElJa ; we'd

now need to add a new RelIMNLELGENA& T N lIudDIIG@MWM Method to the

class. You can likely see how this file could start growing quickly. This could
be a perfect place to use an interface!

Let's start by creating one; we'll call it EITRELEI Il dll and define it

like so:

41

interface DownloadableReport

{

public function getName(): string;

public function getHeaders(): array;

public function getData(): array;

We can now update the JERKILE LI and WIHE{lladl to implement the

DITIINCELEN ATl Ju Ml interface as seen in the example below. But please
note, | have purposely written the code for the wrong so that

| can demonstrate something!

class BlogReport implements DownloadableReport

{

public function getName(): string

{
return 'Blog report';

}

public function getHeaders(): array
{
return ['The headers go here'];

I

public function getData(): array
{

return ['The data for the report is here.'];

}

42

class UsersReport implements DownloadableReport

{

public function getName()

{

return ['Users Report'];

}

public function getData(): string
{

return 'The data for the report is here.';

}

If we were to try and run our code, we would get errors for the following

reasons:

. The BSGEECERI@N Method is missing.

2. The method doesn't include the return type that is
defined in the interface’'s method signature.

3. The method defines a return type, but it isn't the same
as the one defined in the interface’'s method signature.

So, to update the IHEIS ol Ja 4l so that it correctly implements the

DITIIRCEGEN NI Ju Ml interface, we could change it to the following:

43

class UsersReport implements DownloadableReport

{
public function getName(): string

{

return 'Users Report';

}

public function getHeaders(): array

{
return [];

}

public function getData(): array
{

return ['The data for the report is here.'];

I

Now that we have both of our report classes implementing the same

interface, we can update our R slJ@«pleMRLElNTAV KW like sO:

class ReportDownloadService

{
public function downloadReportPDF(DownloadableReport $report)

{

$name = $report->getName();

We could now passin a or object into the
[N KCET =TI IR L DII@M Method without any errors. This is because we now

know that the necessary methods needed on the report classes exist and
return data in the type that we expect.

As a result of passing in an interface to the method rather than a class, this

has allowed us to loosely couple the JEI IR ITNNEN-IQ% -0 and the

report classes based on what the methods do, rather than how they do it.

44

If we wanted to create a new GEINGsR4S: ol ludll We could make it

implement the same interface and then this would allow us to pass the
report object into the same method without
needing to add any new methods. This can be particularly useful if you are
building your own package or framework and want to give the developer
the ability to create their own class. You can simply tell them which
interface to implement and they can then create their own new class. For
example, in Laravel, you can create your own custom cache driver class by

implementing the ERBEHEYSAeeloh doFTa A\ eET AN o0 interface.

As well as using interfaces to improve the actual code, | tend to like
interfaces because they act as code-as-documentation. For example, if
I'm trying to figure out what a class can and can't do, | tend to look at the
interface first before a class that is using it. It tells you all of the methods
that can be called without me needing to care too much about how the
methods are running under the hood.

It's worth noting for any of my Laravel developer readers that you'll quite

often see the terms "contract” and "interface” used interchangeably.

According to the Laravel documentation, "Laravel's contracts are a set of
interfaces that define the core services provided by the framework”. So, it's
important to remember that a contract is an interface, but an interface
isn't necessarily a contract. Usually, a contract is just an interface that is
provided by the framework. For more information on using the contracts, I'd

recommend giving the documentation a read as | think it does a good job
of breaking down what they are, how to use them, and when to use them.

Conclusion

This chapter should have given you a brief overview of what interfaces are,
how they can be used in PHP, and the benefits of using them.

45

https://laravel.com/docs/8.x/cache#adding-custom-cache-drivers
https://laravel.com/docs/8.x/contracts
https://laravel.com/docs/8.x/contracts

Chapter 5

Using the Strategy
Pattern

Using the Strategy Pattern

Introduction

In software and web development, it's always important to write code that
is maintainable and extendable. The solution that you first create will likely
change over time. So, you need to make sure you write your code in a way

that doesn't require a whole rewrite or refactor in the future.

The strategy pattern can be used to improve the extendability of your
code and also improve the maintainability over time.

Intended Audience

This chapter is probably the most complex in this guide. It's written for
Laravel developers who have an understanding of how interfaces work and
how to use them to decouple your code. If you've read the previous
chapter, you should be able to understand the overall concept. In my
personal opinion, the best way to understand the concepts covered in this
chapter is to give them a try yourself while (or after you've finished)

reading it.

It's also strongly advised that you have an understanding of dependency

injection and how the Laravel service container works.

What Is the Strategy Pattern?

Refactoring Guru defines the strategy pattern as a "behavioral design

pattern that lets you define a family of algorithms, put each of them into a
separate class, and make their objects interchangeable.”. This might sound
a bit scary at first, but | promise that it's not as bad as you think. If you want
to read more into design patterns, I'd highly recommmend checking out

47

https://laravel.com/docs/8.x/controllers#dependency-injection-and-controllers
https://laravel.com/docs/8.x/controllers#dependency-injection-and-controllers
https://laravel.com/docs/8.x/container#introduction
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/

Refactoring Guru. They do a great job of explaining the strategy pattern

in-depth as well as other structural patterns.

The strategy pattern is basically a pattern that helps us to decouple our

code and make it super extendable.

Using the Strategy Pattern in Laravel

Now that we have a basic idea of what the strategy pattern is, let's look at
how we can use it ourselves in our own Laravel application.

Let's imagine that we have a Laravel application that users can use for
getting exchange rates and currency conversions. Now, let's say that our
app uses an external API (exchangeratesapi.io) for getting the latest
currency conversions.

We could create this class for interacting with the API:

class ExchangeRatesApiIO

{
public function getRate(string $from, string $to): float

{

return $rate;

Now, let's use this class in a controller method so that we can return the
exchange rate for a given currency. We're going to use dependency
injection to resolve the class from the container:

48

https://refactoring.guru/
https://exchangeratesapi.io

class RateController extends Controller

{

public function __1invoke(
ExchangeRatesApiI0 $exchangeRatesApiIO
): JsonResponse {
$rate = $exchangeRatesApiIO->getRate(

request()->from,
request()->to,

)5

return response()->json(['rate' => $rate]);

This code will work as expected, but we've tightly coupled the

class to the controller method. This means that if we
decide to migrate over to using a different API, such as Fixer, in the future,
we'll need to replace everywhere in the codebase that uses the

class with our new class. As you can imagine, in large
projects, this can be a slow and tedious task sometimes. So, to avoid this
issue, instead of trying to instantiate a class in the controller method, we
can use the strategy pattern to bind and resolve an interface instead.

Let's start by creating a new RINQEREELEICSNIGGILN interface:

interface ExchangeRatesService

{

public function getRate(string $from, string $to): float;

}

49

https://fixer.io

We can now update our SNIENCLEIH. AN class to implement this

interface:

class ExchangeRatesApiI0 implements ExchangeRatesService

{

public function getRate(string $from, string $to): float
{

return $rate;

Now that we've done that, we can update our controller method to inject
the interface rather than the class:

class RateController extends Controller
{
public function __1invoke(
ExchangeRatesService $exchangeRatesService
): JsonResponse {
$rate = $exchangeRatesService->getRate(
request()->from,
request()->to,

)s

return response()->json(['rate' => $rate]);

Of course, we can't instantiate an interface; we want to instantiate the

YL ENELET sR{eM Class. SO, we need to tell Laravel what to do whenever
we try and resolve the interface from the container. We can do this by

using a service provider. Some people prefer to keep things like this inside

their RS Ia%RL-IH % Il and keep all of their bindings in one place.

However, | prefer to create a separate provider for each binding that | want
to create. It's purely down to personal preference and whatever you feel fits

50

https://laravel.com/docs/8.x/providers#introduction

your workflow more. For this example, we're going to create our own service
provider.

Let's create a new service provider using the Artisan command:

php artisan make:provider ExchangeRatesServiceProvider

We'll then need to remember to register this service provider inside the

app/config.php QLEEKeE (o)W

return [
'providers' => [

\App\Providers\ExchangeRatesServiceProvider::class,

Now, we can add our code to the service provider to bind the interfaces
and class:

class ExchangeRatesServiceProvider extends ServiceProvider

{

public function register(): void
{
$this-=app-=bind(

ExchangeRatesService::class,
ExchangeRatesApiIO::class

Now that we've done all of this, when we dependency inject the

S ENEELENSY-Q -l interface in our controller method, we'll receive an
ST ENEELE 500l class that we can use.

51

Binding Multiple Classes to Interfaces

Now that we know how to bind an interface to a class, let's take things a bit
further. Let's imagine that we want to be able to decide whether to use the
ExchangeRatesAPLio or the Fixer.io APl whenever we'd like just by updating

a config field.

We don't have a class yet for dealing with the Fixer.io API yet, so let's create

one and make sure that it implements the BNIERTELENTAv I

interface:

class FixerI0 implements ExchangeRatesService

{

public function getRate(string $from, string $to): float
{

return $rate;

We'll now create a new field in our S ET-YATIa A A1 1ol file:

return [

‘exchange-rates-driver' => env('EXCHANGE_RATES_DRIVER'),

We can now update our service provider to change which class will be
returned whenever we resolve the interface from the container:

52

class ExchangeRatesServiceProvider extends ServiceProvider
{
public function register(): void
{
$this->app->bind(ExchangeRatesService::class, function ($app) {
$driver = config('services.exchange-rates-driver');

if ($driver === 'exchangeratesapiio') {
return new ExchangeRatesApiIO();

+
if ($driver === 'fixerio') {
return new FixerIO();

}

throw new Exception('The exchange rates driver is invalid.');

Now if we set our exchanges rates driver in our to

and try to resolve the
SCLEN-ELEN I -l from the container, we will receive an

class. If we set our exchanges rates driver in our
to and try to resolve the

SYIENELENSYQ% - from the container, we will receive a
class. If we set the driver to anything else accidentally, an exception will be
thrown to let us know that it's incorrect.

Due to the fact that both of the classes implement the same interface, we
can seamlessly change the E eI\ ISMDLEIVILN field in the EEERVA file
and not need to change any other code anywhere.

Conclusion

Is your brain fried yet? If it is, don't worry! Personally, | found this topic pretty
difficult to understand when | first learned about it. | don't think | started to
really understand it until | put it into practice and used it myself. So, I'd
advise spending a little bit of time experimenting with this yourself. Once

53

you get comfortable with using it, | guarantee that you'll start using it in
your own projects.

This chapter has given you an overview of what the strategy pattern is and
how you can use it in Laravel to improve the extendability and
maintainability of your code.

54

Chapter 6

Making Your Laravel
Application More
Testable

Making Your Laravel Application More
Testable

Introduction

Testing is an integral part of web and software development. It helps to
give you the confidence that any code that you have written meets
acceptance criteria and also reduces the chances of your code having
bugs. In fact, IDD (test driven development), a popular development
approach, actually focuses on tests being written before any code is

added to the actual app codebase.

Intended Audience

This chapter is aimed at developers who are fairly new to the Laravel world
but have a basic understanding of tests. We won't cover how to write basic
tests, but it will show you how you can approach your code in a slightly
different way to improve your code quality and test quality.

Why Should | Write Tests?

Tests are often thought of as being an afterthought and a "nice to have" for
any code that is written. This is seen especially in organisations where
business goals and time constraints are putting pressure on the
development team. And in all fairness, if you're only trying to get an MVP
(minimum viable product) or a prototype built together quickly, maybe the
tests can take a bit of a backseat. But, the reality is that writing tests before

the code is released into production is always the best option!

When you write tests, you are doing multiple things:

56

https://www.freecodecamp.org/news/test-driven-development-what-it-is-and-what-it-is-not-41fa6bca02a2/

e Spotting bugs early - Be honest, how many times have you written

code, ran it once or twice, and then committed it to your version
control system. I'll hold my hand up, I've done it myself. You think to
yourself “it looks right and it seems to run, I'm sure it'll be fine". Every
single time | did this, | ended up with either my pull requests on
GitHub being rejected or bugs being released into production. So by
writing tests, you can spot bugs before you commit your work and
have a bit more confidence whenever you release them to
production.

Making future work and refactoring easier - Imagine that you need
to refactor one of the core classes in your application. Or, that you
maybe need to add some new code to that class to extend the
functionality. Without tests, how are you going to know for certain
that changing or adding any code isn't going to break the existing
functionality? Without a lot of manual testing, there's not much way
of quickly checking. So, by writing tests when you write the first
version of the code, you can treat them as regression tests. That

means that every time you update any code, you can run the tests to
make sure everything is still working. You can also keep adding tests
every time you add new code so that you can be sure your additions
are also working.

Changing the way you approach writing code - When | first learned
about testing and started writing my first tests (for a Laravel app
using PHPUnit), | quickly realised that my code was pretty difficult to
write tests for. It was hard to do things like mocking classes,
preventing third-party API calls, and making some assertions. To be
able to write code is a way that can be tested, you have to look at
the structure of your classes and methods from a slightly different

angle than before.

57

https://www.globalapptesting.com/regression-testing-guide
https://laravel.com
https://phpunit.de/

Writing Controller Tests

To explain how we can make your code more testable, we'll use a simple
example. Of course, there are different ways that you could write the code
and this might be that simple that it doesn't matter. But, hopefully, it should
help explain the overall concept.

Let's take this example controller method:

use App\Services\NewsletterSubscriptionService;
use Illuminate\Http\JsonResponse;
use Illuminate\Http\Request;

class NewsletterSubscriptionController extends Controller

{

public function store(Request $request): JsonResponse
{
$service = NewsletterSubscriptionService();
$service->handle($request->email);

return response()->json(['success' => true]);

The above method, which we'll assume is invoked if you make a POST

request to WAETSSadI A Ifdalas [0 accepts an parameter

which is then passed to a service. We can then assume that the service
handles all of the different processes that need to be carried out to
complete a user's subscription to the newsletter.

To test the above controller method, we could create the following test:

58

class NewsletterSubscriptionControllerTest extends TestCase

{

public function success_response_1is_returned()

{

$this->postIson('/newsletter/subscriptions', [

‘email' => 'mail@ashallendesign.co.uk',
] }->assertExactlson([
‘success' => true,

There's just one problem that you might have noticed in our test. It doesn't
actually check to see if the service class’ method was called!
So, if by accident we were to delete or comment out that line in the
controller, we wouldn't actually know.

Writing Better Controller Tests

What's the Problem?

One of the problems that we have here is that without adding extra code to
flag or log that the service class has been called, it's pretty difficult for us to
check that it's been written.

Sure, we could add more assertions in this controller test to test the service
class's code is all being run. But that can lead to an overlap in your tests.
For argument'’s sake, let's imagine that our Laravel app allows users to
register and that whenever they register they are automatically signed up
to the newsletter. Now, if we were to write tests for this controller as well
that checked that all of the service class was run correctly, we'd have 2
near duplicates of test code. This would mean that if we were to update
the way that the service class runs internally, we'd also need to update all
of these tests as well.

59

In all fairness, sometimes you might actually want to do that. If you're
writing a feature test and run assertions against the whole end-to-end
process, this would be suitable. However, if you're trying to write unit tests
and only want to check the controller, this approach won't quite work.

How Can We Fix the Problem?

In order to improve the test that we've got, we can make use of mocking,

the service container, and dependency injection. | won't go too much into

too much depth about what the service container is, but, I'd definitely
recommend reading into it because it can be incredibly helpful and is a

core part of Laravel.

In short (and very basic terms), the service container manages class
dependencies and allows us to use classes that Laravel has already set up
for us. To understand what | mean by this, let’s take a look at the following

examples below.

To make our code example more testable, we can instantiate the

VAR ST S N S L NERA -l by using dependency injection to resolve

it from the service container, like this:

60

https://laravel.com/docs/8.x/mocking#introduction
https://laravel.com/docs/8.x/container
https://laravel.com/docs/8.x/controllers#dependency-injection-and-controllers

use App\Services\NewsletterSubscriptionService;
use Illuminate\Http\JsonResponse;
use Illuminate\Http\Request;

class NewsletterSubscriptionController extends Controller

{

public function store(
Request $request,
NewsletterSubscriptionService $service
): JsonResponse {
$service->handle($request->email);

return response()->json(['success' => true]);

What we've done above is we've added the

class as an argument to the
method because Laravel allows dependency injection in controllers. What
this basically does is it tells Laravel when it's calling this method is "Hey, |
also want you to pass me a I". Laravel
then replies and says "Okay, I'll grab one now for you from the service
container”.

In this case, our service class doesn't have any constructor arguments, so
it's nice and simple. However, if we had to pass in constructor arguments,
we'd potentially have to create a service provider that handles what data
is passed into the class when we first instantiate it.

Because we're now resolving from the container, we can update our test
like so:

61

class NewsletterSubscriptionControllerTest extends TestCase

{

public function success_response_1is_returned()

{

$mock = Mockery::mock(NewsletterSubscriptionService::class)
->makePartial();

$mock->shouldReceive('handle')
->once()
->withArgs(['mail@ashallendesign'])

->andReturnNull();

app()->instance(NewsletterSubscriptionService::class, $mock);

$this->postison('/newsletter/subscriptions', [
‘email' => 'mail@ashallendesign.co.uk',
])->assertExactlson([
‘success' => true,

1)

Now, in the above test, we start off by using Mockery to create a mock of
the service class. We then tell the service class that by the time the test
finishes running, we expect that the method will have been
called once and have mail@ashallendesign.co.uk as the only parameter.
After doing that, we then tell Laravel "Hey Laravel, if you need to resolve a

VES SIS Ty s e Q%W Ot any point, here's one for you to return”.

This means now that in our controller, the second parameter isn't actually
the service class itself, but instead a mocked version of this class.

So, when we run the test now, we'll see that the BELEIEION Method is
actually called. As a result of this, if we were to ever delete where that code
is called or add any logic which might prevent it from being called, the test

62

http://docs.mockery.io/en/latest/

would fail because Mockery would detect that the method was not
invoked.

Bonus Testing Tip

There might be times when you're inside a class of code and it turns out
that without some major refactoring you won't be able to inject your class
(that you want to mock) by passing it as an extra method argument. In
these cases, you can make use of the helper method that
comes with Laravel.

The method simply returns a class from the service container.
As a small example, let's look at how we could have updated our example
controller method to still be testable with Mockery but without adding an
extra argument:

use App\Services\NewsletterSubscriptionService;
use Illuminate\Http\JsonResponse;
use Illuminate\Http\Request;

class NewsletterSubscriptionController extends Controller

{

public function store(Request $request): JsonResponse

{
$service = resolve(NewsletterSubscriptionService::class);
$service->handle($request->email);

return response()->json(['success' => true]);

63

Conclusion

This chapter should have given you a little bit of an insight into how you
can make your Laravel app more testable by making use of the service

container, mocking, and dependency injection.

Remember that tests are your friends and can save you an unbelievably
huge amount of time, stress, and pressure if they're added when code is
first written. And as an added bonus, higher-quality tests and increased
test coverage usually (but not always) lead to fewer bugs, which means

fewer support tickets and happier clients!

64

Laravel Web Developer

github.com/ash-jc-allen

linkedin.com/in/ashleyjcallen

ashallendesign.co.uk

mail@ashallendesign.co.uk

